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The h-p version of the finite element method is used to furnish a detailed study of the
vibration characteristics of completely free, open, cylindrically curved, isotropic shell
panels. Convergence studies have been carried out to ascertain the most appropriate mix
of h-refinement and p-enrichment necessary to give a reasonable solution accuracy; this
approach has been corroborated by comparing results from the present methodology with
the work of other investigators and the results forthcoming from a proprietary finite
element package. Extensive results have been presented for panels with aspect ratios of 0·5,
1 and 2, the curvature of which is gradually increased from that of a flat plate at one
extreme, to a complete, although unjoined, cylinder at the other. Curves of frequency versus
included angle (curvature) have been obtained for the first 20 modes of each of these panels,
and the following observations have been made: (i) the majority of the low frequency modes
are virtually independent of shell curvature; and (ii) the modes that are heavily influenced
by curvature effects involve motion that is confined to the lengthwise edge regions of the
panel.

7 1997 Academic Press Limited

1. INTRODUCTION

The vibration characteristics of completely free, open, cylindrically curved shell panels
have received scant attention in the classical literature, because, like most other problems
with unrestrained edges, no exact analytical solution is available. Resort has to be made
to approximate solutions, and the earliest of these that (indirectly) addressed the title
problem can be traced to Gontkevitch [1, 2]. He derived frequency determinants for open
shells using the Ritz method with the assumed displacement field based on products of
conventional beam functions and curved-beam functions; however, no explicit numerical
results were reported. This work remained the only extant literature source on the title
problem that Leissa [3] was able to reference in his comprehensive monograph of 1973.
It was not until 1984 that Leissa and Narita [4] provided the first known set of
comprehensive results for a completely free shallow shell, by using the Ritz method with
polynomial assumed displacement functions. In a sequel published two years later [5],
Narita and Leissa solved the same problem, but now with the shape of the platform
boundaries generalized to accommodate curvilinear, rather than rectangular, edges.
Subsequent literature searches [6] failed to reveal any further work on this particular topic
prior to 1992; however, a number of relevant articles by Liew and Lim [7–10] have recently
appeared in the literature devoted to the vibration of shallow shells. None of these papers
contains results for freely suspended cylindrical shell panels, although it is clear from the
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methodology employed by these authors that their pb-2 Ritz methodology would be
capable of analyzing such problems. Notwithstanding this, it can be concluded that the
completely free edge condition still remains one of the few largely unreported cases of the
18 496 [3] distinctly different panel boundary conditions that can exist for this problem;
further study is clearly desirable.

In all the preceding work, with the exception of Gonkevitch’s, the shell panels were
assumed to be shallow, and the resulting analyses were based on a simplified set of shell
equations [4]. In what follows, no such restrictions are made, and it is possible to model
an arbitarily deep panel of constant curvature by using Love’s full shell equations [11] with
the modification introduced by Arnold and Warburton [12]. (A full discussion concerning
the comparative merits and demerits of using shallow and deep shell theories has been
presented by Lim, Kitipornchai and Liew [10].)

The layout of this paper naturally divides into two major sections. In the first part, the
theoretical model is developed, and some convergence tests are conducted against the
Leissa and Narita results [4]. In the second part, results are presented for three thin shells
with aspect ratios (a/b) of 0·5, 1 and 2, the curvatures of which are gradually increased
from nothing (i.e., a flat plate) until a complete—although unconnected—cylinder is
obtained. Plots are presented of modal frequency versus included angle over the range
0°EfE 360°, which clearly show the effect curvature has on the frequencies and modes
of these panels. Some discussion, related to various features of the plots just mentioned,
is given regarding the underlying physics of the problem.

The twofold purpose of this paper is, therefore, to provide a solution of the title problem
and to provide some useful benchmark results for those engaged either in the dynamic
analysis of restrained cylindrical shell panels, where it is customary to solve the completely
free (unrestrained) problem first in order to check that the eigensolver is returning the
correct number of zero frequency rigid body modes, or those engaged in experimental
work, for which completely free edge conditions are the easiest to simulate in the
laboratory.

2. METHOD OF ANALYSIS

An h-p version of the finite element method is utilized in what follows, because it affords
the user a robust, flexible, and economic analysis tool that can accommodate geometric
and material irregularities with greater facility than a conventional Ritz type of
formulation. (If no such irregularities are present, which is the case for the title problem,
then it can be shown that a single super-element with a high p-boost—which is effectively
a Rayleigh–Ritz method—provides the most efficient solution, a finding which concurs
with the work of other investigators [7, 9].)

The h-p method may be regarded as the marriage of the conventional h-version and
p-version, in which convergence is now sought by simultaneously refining the mesh and
increasing the degree of the elements [13–16]. For the type of problem under consideration
here, in which the motions in all three co-ordinate directions are coupled, it is
advantageous to represent both the out-of-plane displacements and the in-plane
displacements by the same set of assumed modes. There are two good reasons for doing
this: (i) it greatly reduces the computational effort required to calculate the element stiffness
and mass matrices; and (ii) it simplifies the element assembly process.

An ascending hierarchy of K-orthogonal polynomials, used in conjunction with Hermite
cubics, will furnish a complete set of admissible displacement functions with full C1

continuity—that is, one that is capable of satisfying both displacement and slope
continuity, in all three co-ordinate directions, across an element boundary (this set is
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T 1

The first ten C1 shape functions used in this work

Hermite cubic shape functions
f1(j)=1/2−3/4j+1/4j3

f2(j)= (1/8−1/8j−1/8j2 +1/8j3)LE

f3(j)=1/2+3/4j−1/4j3

f4(j)= (−1/8−1/8j+1/8j2 +1/8j3)LE

K-orthogonal polynomial shape
functions

f5(j)=1/8−1/4j2 +1/8j4

f6(j)=1/8j−1/4j3 +1/8j5

f7(j)=−1/48+3/16j2 −5/16j4 +7/48j6

f8(j)=−1/16j+5/16j3 −7/16j5 +3/16j7

f9(j)=1/128−5/32j2 +35/64j4 −21/32j6 +33/128j8

f10(j)=5/128j−35/96j3 +63/64j5 −33/32j7 +143/384j9

summarized in Table 1). The Hermite cubics are used to define the displacements and
rotations at the four nodes, and the hierarchical functions are used to provide additional
degrees of freedom to the edges and interior of the element. (It is noted that an in-plane
rotation can be regarded as a drilling degree of freedom, and as such represents an in-plane
shear strain—rather than a displacement—at a node.) The nodal displacements/rotations
and the amplitudes of the hierarchical functions along the edges and in the interior of the
panel element constitute the generalized co-ordinates of the problem. Interelement
compatibility is achieved simply by matching the generalized co-ordinates at common
element nodes and along common edges.

Consider a thin, cylindrically curved, shell element, of uniform thickness h, bounded
along its edges by the lines x=0, x= a, y=0 and y= b. (See Figure 1). Upon introducing
the element-local non-dimensional co-ordinates j, h which are related to the element
Cartesian co-ordinates through j=2x/a−1 and h=2y/b−1, the strain energy of the
panel [11, 12] is given by

U=
1
2 g

+1

−1 g
+1

−1 g
+h/2

−h/2

{o}T{s} ab
4

dh dj, (1)

Figure 1. The curved panel element.
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i.e., {o}=[D]{d}, (2)

and the material constitutive relationship is given by

sx 1 n 0 ox

sy =
E
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Both the in-plane displacement fields u and v, and the out-of-plane displacement field
w, may approximately be represented by a finite series of the previously assumed modes
in the j- and h-directions; namely,

u(j, h)= s
pux

rx=1

s
puy

sx=1

Xrx,sx frx (j)fsx (h), v(j, h)= s
pvx

ry=1

s
pvy

sy=1

Yry,sy fry (j)fsy (h), (4a, b)

and

w(j, h)= s
pwx

rz=1

s
pwy

sz=1

Zrz,sz frz (j)fsz (h). (4c)

Xrx,sx , Yry,sy and Zrz,sz are the [unknown] generalized co-ordinates of the problem, and each
summation is taken over (any number of) p assumed modes. (The first subscript on p
denotes the type of displacement field; the second denotes whether it is in the x- or
y-direction.)

Equation (4) can be written more succinctly in matrix notation as

{d}=[N]{q}, (5)

where d= {u(j, h), v(j, h), w(j, h)}T, q= {Xrx,sx , Yry,sy , Zrz,sz}T and N is a rectangular
matrix containing the shape functions. Hence, substituting equations (2, 3, 5) into equation
(1) yields

U= 1
2 {q}T$ab

4 g
+1

−1 g
+1

−1 g
+h/2

−h/2

([D] [N])T[D] [D] [N] dh dj dz%{q}. (6)

The term in the square brackets is clearly the plate element stiffness matrix KE.
Likewise, in element-local co-ordinates, the kinetic energy of the plate is given by

T= 1
2 r g

+1

−1 g
+1

−1 g
+h/2

−h/2

{d� }T{d� } ab
4

dh dj dz. (7)
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Substituting equation (5) into equation (7) yields

T= 1
2 {q̇}$r ab

4 g
+1

−1 g
+1

−1 g
+h/2

−h/2

[N]T[N] dh dj dz%{q̇}. (8)

Evidently, the term in the square brackets is the plate element mass matrix ME.
Both KE and ME are comprised of nine sub-matrices; namely, one direct bending, two

direct stretching, four coupled bending–stretching and two coupled stretching–stretching.
Equation (4) gives the overall order as (pux × puy )+ (pvx × pvy )+ (pwx × pwy ).

The matrix multiplication and integration required to evaluate the element stiffness and
mass matrices shown in equations (6) and (8) was performed symbolically (for a maximum
of ten assumed in-plane and out-of-plane modes in both the x- and y-directions) by using
the computer algebra package MAPLE [17]. This enables all the entries in KE and ME to
be determined in exact, fractional, algebraic format, and then downloaded to the main
analysis program where they are stored at a familial level. In this way, no numerical
rounding errors are introduced in the calculation of the element stiffness and mass
matrices; also, only one significant computational expense is ever incurred, because, by
keeping KE and ME completely generic, the integration has only to be performed once.

The h-p method of assembling the elements to obtain the global stiffness and mass
matrices is slightly different from the standard h-version technique, on account of the
internal polynomial enrichment that is available in each element. The formulation of the
element stiffness and mass matrices is in accordance with the theory espoused previously,
with each entry in the matrix corresponding to a particular generalized co-ordinate. The
first stage in formulating an assembly process is to re-order these matrices such that the
generalized co-ordinates q appear in the following sequence: nodal (i.e., corner), edge and
purely internal; this is illustrated schematically by

KE or ME = &[N.N]
[E.N]
[I.N]

[N.E.]
[E.E]
[I.E]

[N.I]
[E.I]
[I.I]'. (9)

There are always the following: 16 w-wise, eight u-wise and eight v-wise nodal degrees of
freedom (0N in the notation of equation (9), which correspond to the use of the four
Hermite cubics; 4(pwx −4)+4(pwy −4) w-wise, 4(puy −4)+8+2(pux −4) u-wise and
4(pvx −4)+8+2(pvy −4) v-wise edge degrees of freedom (0E in the notation of equation
(9)), which correspond to the products of the Hermite cubics with the hierarchical
modes; (pwx −4) (pwy −4) w-wise, 2(pux −4)+ (pux −4) (puy −4) u-wise and
2(pvy −4)+ (pvx −4) (pvy −4) v-wise purely internal degrees of freedom (0I in the
notation of equation (9)), which correspond to the products of only the hierarchical modes.

It is now possible to form the global stiffness and mass matrices, by identifying, and
then adding together, all the like terms from any number of adjacent elements which
correspond to common nodal and edge degrees of freedom along their interface. Note the
following: (i) the purely internal modes from one element cannot ‘‘affect’’ the purely
internal modes from any other element, and so these contributions to the global stiffness
and mass matrices remain unaffected by the assembly process—in fact, [I.I]G will be block
diagonal; (ii) all edge-to-edge interfaces are fully conforming; and (iii) since the in-plane
motion in the shell (or plate) is governed by two, coupled, second order differential
equations, it is only necessary to match the displacements u and v across an element
interface to ensure C0 continuity; first derivative continuity (i.e., 1u/1h, 1v/1h, 1u/1j and
1v/1j, which effectively describes the in-plane shear and direct strain/stress at a point)
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across the interface will approximately be satisfied as a consequence of the energy method
used.

The final structure of KG and MG is similar to the partitioned format shown in equation
(9), except that now the dimensions of the sub-matrices are significantly larger than, and
their content significantly different from, those for an individual element.

Although a variety of different boundary conditions may be applied to the panel by
nullifying the appropriate generalized co-ordinates, it is not necessary to do this in the
current work, and KG and MG remain completely intact.

By assuming simple harmonic motion and the absence of any external forcing agency,
the governing equations of motion can be derived by substituting the total potential energy
expression into Lagrange’s equation. This yields a standard matrix-eigenvalue problem of
the form

[[K]−V2[M]]{q}=0, (10)

where the non-dimensional frequency is rendered not in terms of the usual shell ring
frequency but rather in terms of a flat plate frequency V2 = rhv2b4/D, where D is the
flexural rigidity of the panel Eh3/12(1− n2). The reason for choosing this frequency
measure is two-fold: (i) it permits a direct comparison to be made with the work on shallow
shells reported by other investigators; and (ii) it is the best way of quantifying the effect
on the radian (dimensional) frequency of varying parameters such as the panel’s radius of
curvature. The solution of equation (10) yields the natural frequencies. The first six of these
are always zero, corresponding to rigid-body modes; these will be disregarded in the
‘‘numbering’’ of the elastic modes. Corresponding to each eigenvalue is an eigenvector,
which may be used in conjunction with equation (4) to recover the associated displacement
of each element in the model, and hence the complete mode of the panel under
consideration.

3. CONVERGENCE STUDY

A convergence study was undertaken using three different h meshes, each with different
amounts of p-enrichment, for a completely free, square planform, shallow shell with the
following geometry: a/h=100, a/b=1·01, the included angle f=28·96°, and Poisson
ratio n=0·3. The reason such unusual parameters have been chosen is simply to enable
a strict, like-for-like comparison to be conducted against the work of Leissa and Narita
[4]*; in this manner, their results can be used as a benchmark solution for the present
method. The frequencies of the first four elastic modes are presented in Table 2. As would
be expected, the frequency parameters are seen to converge monotonically from above,
yielding upper bounds to the exact values. The four- and eight-element meshes provide
marginally more accurate results than the single super-element, as would be expected,
albeit at a vastly inflated ‘‘cost’’ considering the number of degrees of freedom (dof)
involved. However, it is worth noting that for a given number of degrees of freedom, the
solution arising from the use of a single super-element mesh is always the more accurate.
Independent verification has been obtained from a standard finite element analysis using
the proprietary package ANSYS [18]. The frequency results arising from different meshes
constructed from the four-noded SHELL-63 element are included in Table 2 for
completeness. The results from both the h-p methodology and ANSYS agree to a
remarkable degree; however, some differences are noticed between these sets of results and
those of Leissa and Narita. There are two likely sources of error that can account for

* Leissa and Narita defined the aspect ratio a/b in terms of the projected length of the curved edge, rather
than the actual length of the curved edge adopted here.
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T 2

Convergence study based on three different mesh designs: the first four non-dimensional
frequencies of a completely free cylindrical shell (a/h=100, a/b=1·01, f=28·95° and

n=0·3)

Current
method V1 V2 V3 V4 dof

h=1 p=6 13.423 21.678 34.709 49.815 108
p=8 13.403 21.475 34.148 48.917 192
p=10 13.403 21.473 34.147 48.908 300

h=4 p=6 13.403 21.475 34.151 48.926 320
p=8 13.403 21.473 34.147 48.907 616
p=10 13.403 21.473 34.147 48.906 1 008

h=8 p=6 13.403 21.474 34.148 48.910 588
p=8 13.403 21.473 34.147 48.907 1 160
p=10 13.403 21.473 34.147 48.906 1 924

ANSYS 30×30 13.407 21.476 34.165 48.963 5 766
ANSYS 50×50 13.404 21.474 34.153 48.926 15 606
ANSYS 100×100 13.403 21.473 34.148 48.913 61 206

Leissa and Narita [4] 13.508 22.073 34.868 48.703 75

this difference: (i) the different types of shell theory employed: and (ii) the
acknowledged level of (incomplete) convergence in Leissa and Narita’s work. However,
sufficient agreement has been demonstrated to inspire confidence in the current
methodology.

4. RESULTS

Rather than present a series of ad hoc results for arbitrary panel geometries, it was
decided that a more effective strategy would be to fix the panel planform and thickness,
and then vary the radius of curvature such that a flat plate is realized at one extreme, and
a full, although unjoined, cylinder is obtained at the other. By taking panel aspect ratios
a/b of 0·5, 1 and 2, and fixing the shell thickness* h= b/2000 and Poisson ratio n=0·3,
a large range and combination of geometric parameters can be studied without rendering
this article unduly prolix.

In Figures 2, 3 and 4 are presented plots of frequency versus included angle for the first
20 elastic modes of the aformentioned panels with aspect ratios a/b of 0·5, 1 and 2
respectively. All of these results have been generated using a fixed mesh design comprising
four elements around the shell circumference; the levels of p-enrichment in the h- and
j-directions were eight and ten respectively, for all three components of displacement,
within each element. This level of mesh refinement—which amounts to an 810 dof
problem—ensured the results for the first 20 modes (2·5% of the total number yielded)
were fully converged. A logarithmic scale was chosen for the abscissa (included angle f)
simply because the most complicated modal behaviour takes place within the first 10°, and
it was felt important to show this clearly.

* For all three shells, the length of the curved edge, b, is fixed, and the length of the straight edge, a, is varied
to give the appropriate aspect ratio. Hence b is used as the basis for the non-dimensional frequency factor in
equation (10), and the non-dimensional thickness-to-length ratio. The latter value of h/b=1/2000 has been used
simply to preserve the thin shell criterion.
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On each figure, the shell ring frequency vR =(E/r)1/2/R, which becomes
VR =f(b/h) [12(1− n2)]1/2 on the plate non-dimensional frequency scale, is plotted as a
dashed line. It is evident from each figure, but especially so on Figure 2 (a/b=0·5) that,
for a given shell, the modal density (number of modes per unit frequency) increases
significantly in the region of the ring frequency, which accords with expectation [19].

In order to quantify further the vibrational behaviour of these panels, the first 12 elastic
modes of the square planform shell with included angles of 0°, 1°, 10°, 100° and 360° are
presented in Figures 5, 6, 7, 8 and 9 respectively. The modes for the other two rectangular
panels exhibit most, if not all, of the features observed for the square panel, and do not
therefore warrant inclusion here.

It should be noted that the lengthwise edges of the full, unjoined, cylinder can
theoretically overlap on part of their cycle, as typified by case V3 in Figure 9. The results
are not intended to suggest such a ‘‘slit tube’’ would constitute a viable structure—rather,
they complete the set of results presented here, and provide a stark contrast to the modes
that would exist in a freely suspended closed cylindrical tube.

4.1.  

When the radius of curvature is infinite (corresponding to zero included angle), the
frequencies of a completely free flat plate are obtained. (Note, however, that it is not
possible to show these when using logarithmic axes.) It is well-known [20] that for plates

Figure 2. Frequency variation as a function of included angle of curvature for the first 20 modes of a curved
panel (a/b=0·5, b/h=2000 and n=0·3).
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Figure 3. Frequency variation as a function of included angle of curvature for the first 20 modes of a curved
panel (a/b=1·0, b/h=2000 and n=0·3).

with certain aspect ratios, some of their modes are degenerate. For example, a completely
free square plate will have the following (elastic) degenerate pairs: modes 4 and 5 at
V=34·801, modes 6 and 7 at V=61·093, modes 11 and 12 at V=105·461, and modes
15 and 16 at V=131·472. Reference to Figure 3 makes it clear that such degeneracies are
destroyed for all fq 0°; the apparent display of degenerate pairs up to f=0·1° arises
as a consequence of the relatively large scale used on the frequency axis. The reason
degenerate pairs separate upon the introduction of curvature is due to the now different
flexural stiffnesses in the j- and h-directions—a curved shell is stiffer in a direction along
its generator than in a direction around its circumference. This effectively renders the
stiffness of the panel orthotropic, and hence degenerate modes for the square flat plate
become distinctly different when the panel is curved slightly.

For all three shells considered here, the frequency of the fundamental mode, and some
of the higher modes, is more or less independent of the amount of curvature. An
explanation can be found by examining the first and second modes of vibration of the
square panel shown in Figures 5–9, cases V1 and V2.

The first mode consists of a predominantly twisting action about the j- and h-axes,
leading to an antisymmetric–antisymmetric mode of vibration. The torsional rigidity about
either axis is unaffected by curvature, but the polar second moment of area (which dictates
the mass inertia), and the separation between the centre of mass (bending) and the shear
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centre (twisting), will change with increasing curvature. These latter effects affect the
frequency of this mode only when the angle of curvature exceeds 100°.

For the range of angles shown in Figure 3, the second mode involves predominantly
out-of-plane bending in the h-direction, with little or no in-plane extensional motion
(middle surface stretching). (A contour plot taken at z=0 would show nodal lines that
are nearly parallel to the generator of the cylinder, becoming increasingly straight with
increasing curvature.) Because Ih does not change with increasing curvature, the frequency
again will remain constant as a function of curvature until elastic coupling effects between
the in-plane and out-of-plane motions become significant. These findings are consistent
with the results given by Leissa and Narita [4]. (It can be noted from Figure 5 that the
second mode of the flat plate is distinctly different from, and occurs at a significantly lower
frequency than, the results reported for panels with fe 1°. Again, this accords with the
findings of Leissa and Narita [4].)

Also, the greater the value of a/b, the greater the tendency for the lower frequency modes
to involve bending both around and along the length of the panel. For this reason, the
first four modes of the a/b=0·5 panel consist only of bending motions around the shell
circumference, whereas for the a/b=2 panel, the corresponding four modes are
interleaved with other modes involving bending in both directions.

It can be seen in Figures 2, 3 and 4 that a lot of complicated low frequency mode
re-ordering takes place within the first 10° of included angle, after which a more settled

Figure 4. Frequency variation as a function of included angle of curvature for the first 20 modes of a curved
panel (a/b=2·0, b/h=2000 and n=0·3).
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trend appears. For the square panel, this trend may best be described between
10°EfE 90° as a series of pairs of horizontal lines, traversed by (in this case) three steeply
ascending curves (denoted A, B and C in Figure 3). For included angles in excess of 90°,
a general reduction in the frequencies of all but the first three modes is apparent. (Although
this latter range is somewhat compressed in Figures 2, 3 and 4 due to the use of a
logarithmic scale, it nonetheless represents three-quarters of the included angle range
considered here.) The observed reduction in frequency occurs beyond the previously
quoted range of validity of shallow shell theory (this range has been indicated on Figure 3).

To conclude this general overview, it is interesing to note that the frequencies of some
of the early modes—e.g., modes 7 and 8 of the a/b=2 panel (see Figure 2)—can increase
by as much as 50% when the panel is curved by some 5°. Hence investigators should be
aware of the difficulties that may be experienced in obtaining consistent results with
experimental work—any slight handling damage that introduces a minute amount of
curvature would render useless any measurements taken on a supposedly flat plate. (Note
that, for small angles, the ratio of the panel thickness to the mid-span rise above the
horizontal can be shown to be 8h/bf; for the current shell, with h/b=1/2000 and 5° of
included angle, this ratio equals 0·046. In other words, the mid-span rise is approximately
22 times the panel thickness, which, although small, is nonetheless a noticeable amount
of curvature.)

4.2.       

In the preceding section it was explained why the frequencies of the first two modes
remained more or less independent of the amount of shell curvature. Likewise, the general
trend of the modal frequency curves to the right of the ring frequency curve were described.
However, it is worth considering this modal behaviour in greater detail, since there are
some interesting manifestations that hitherto have not been reported. With the aid of
Figures 5–9, it can be seen that the series of near horizontal pairs of lines shown in Figure 3
to the right of the ring frequency curve correspond to modes exhibiting increasing numbers
of half-waves in the (h) circumferential direction, with near linear symmetric and
antisymmetric displacements in the length-wise (j) direction.

For a given pair, the mode exhibiting symmetry about the h-axis always occurs at a
lower frequency than its companion mode exhibiting asymmetry—that is, straight edge
twisting—about the h-axis. A view directly on to the curved end of the panel would confirm
that these modes are the panel equivalent of the free–free modes of a curved beam. To
the left of the ring frequency, this dichotomous behaviour is less obvious, although it can
still be identified, albeit in a less distinct fashion. The frequencies of this family of modes
are largely independent of the amount of curvature present since they all involve bending
around the circumference, with nodal lines parallel with a shell generator.

Perhaps of greater interest is the significance of the three steeply ascending curves
(denoted A, B and C in Figure 3); actually there are two overlapping lines constituting
each of these curves. Consider ‘‘curve’’ A: (almost) degenerate modes 10 and 11 occur at
frequencies of V=274·314 and 274·612 respectively for the 100° shell; closely spaced
modes 6 and 7 occur at frequencies of V=103·053 and 105·859 respectively for the 10°
shell. From Figure 8 (cases V10 and V11) and Figure 7 (cases V6 and V7) , it can be seen
that these modes involve elastic motion which is restricted to the panel edges at h=21,
with the rest of the shell remaining motionless. These panel ‘‘edge’’ modes always occur
in symmetric/antisymmetric pairs about the j-axis, and exhibit one clear half wavelength
of motion along the length. In effect, the lengthwise edges are behaving as uncoupled, high
aspect ratio, cantilevered shell panels. ‘‘Curve’’ A thus describes the pair of fundamental
panel ‘‘edge modes’’. It can also be seen from Figures 7 and 8 that increasing the curvature
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of the panel decreases the width of the curved edge capable of motion and thus effectively
raises the ‘‘aspect ratio’’ of the cantilevered shell edge and hence increases the frequency
of its edge modes. (A similar effect has been noted by Lee, Leissa and Wang [21] concerning
localized bending along the free edges of a cantilevered shell panel, suggesting this
mechanism manifests itself in structures other than completely free ones.)

The first overtone of this pair of ‘‘edge modes’’ can be found on curve B in Figure 3,
and visualized from modes 10 and 11 (V=184·875 and 186·059) in Figure 7 (cases V10

and V11) for the 10° shell. Two half-wavelengths now exist along both h-wise edges.
Likewise, curve C describes the second overtone of the panel ‘‘edge modes’’ in this series,
with three half-wavelengths along each edge, and so on.

Where an ‘‘edge mode’’ curve ‘‘crosses’’ a closely spaced pair of ‘‘beam mode’’ curves,
for example in the region marked by a dotted circle on Figure 3, a complex interaction
and exchange of modal characteristics takes place. Whilst the nature of this quid pro quo
remains uncertain, what can be said is that the identity of modes 10 and 11 to the left of
curve B is retained by modes 8 and 9 to the right of curve B; also, the nature of the two
‘‘edge modes’’ denoted on curve A by the letter X are identical to the two ‘‘edge modes’’
denoted further up the curve A by the letter Y. In other words, crossovers of the type just
described do not alter the nature of any of the modes either side of the crossing.* Clearly,
the existence of ‘‘edge’’ modes is very much a consequence of the completely free panel
boundary conditions.

5. CONCLUSIONS

A detailed study of the vibration characteristics of completely free, open, cylindrically
curved, isotropic shell panels has been undertaken by using the h-p version of the finite
element method. The convergence properties of this shell element have been established,
thereby rendering it suitable for use in the parameter studies that follow. Curves of
frequency versus included angle have been obtained for the first 20 modes of panels ranging
from a flat plate at one extreme, to a full, although unjoined, cylinder at the other. By
fixing the panel aspect ratios a/b at 0·5, 1 and 2 respectively, and maintaining a constant
thickness-to-length ratio h/b of 1/2000, results have been generated for a large family of
shell panels.

The curves of frequency versus included angle illustrate (i) that the majority of the low
frequency modes of completely free, open, curved panels, are virtually independent of shell
curvature, and (ii) that the relatively few modes that are most heavily influenced by
curvature effects all involve motion confined to the lengthwise edges of the panel. Similar
modes have been observed for cantilevered cylindrical panels [21], and it can be concluded
that the fewer the constraints on a curved panel are, the more strongly these edge modes
manifest themselves.
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